Maximum profit in job scheduling [DP, Heap]¶
Time: O(NLogN); Space: O(N); hard
We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].
You’re given the startTime , endTime and profit arrays, you need to output the maximum profit you can take such that there are no 2 jobs in the subset with overlapping time range.
If you choose a job that ends at time X you will be able to start another job that starts at time X.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
Output: 120
Explanation:
The subset chosen is the first and fourth job.
Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
Output: 150
Explanation:
The subset chosen is the first, fourth and fifth job.
Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
Output: 6
Constraints:
1 <= len(startTime) = len(endTime) = len(profit) <= 5 * 10^4
1 <= startTime[i] < endTime[i] <= 10^9
1 <= profit[i] <= 10^4
Hints:
Think on DP.
Sort the elements by starting time, then define the dp[i] as the maximum profit taking elements from the suffix starting at i.
Use binarySearch (lower_bound/upper_bound on C++) to get the next index for the DP transition.
1. Dynamic programming [O(NLogN), O(N)]¶
[9]:
import bisect
class Solution1(object):
"""
Time: O(NLogN)
Space: O(N)
"""
def jobScheduling(self, startTime, endTime, profit):
"""
:type: startTime: List[int]
:type: endTime: List[int]
:type profit: List[int]
:rtype: int
"""
jobs = sorted(zip(endTime, startTime, profit))
dp = [(0, 0)]
for e, s, p in jobs:
i = bisect.bisect_right(dp, (s+1, 0))-1
if dp[i][1]+p > dp[-1][1]:
dp.append((e, dp[i][1]+p))
return dp[-1][1]
[10]:
s = Solution1()
startTime = [1,2,3,3]
endTime = [3,4,5,6]
profit = [50,10,40,70]
assert s.jobScheduling(startTime, endTime, profit) == 120
startTime = [1,2,3,4,6]
endTime = [3,5,10,6,9]
profit = [20,20,100,70,60]
assert s.jobScheduling(startTime, endTime, profit) == 150
startTime = [1,1,1]
endTime = [2,3,4]
profit = [5,6,4]
assert s.jobScheduling(startTime, endTime, profit) == 6
2. Heap [O(NLogN), O(N)]¶
[13]:
import heapq
class Solution2(object):
"""
Time: O(NLogN)
Space: O(N)
"""
def jobScheduling(self, startTime, endTime, profit):
"""
:type: startTime: List[int]
:type: endTime: List[int]
:type profit: List[int]
:rtype: int
"""
min_heap = list(zip(startTime, endTime, profit))
heapq.heapify(min_heap)
result = 0
while min_heap:
s, e, p = heapq.heappop(min_heap)
if s < e:
heapq.heappush(min_heap, (e, s, result+p))
else:
result = max(result, p)
return result
[14]:
s = Solution2()
startTime = [1,2,3,3]
endTime = [3,4,5,6]
profit = [50,10,40,70]
assert s.jobScheduling(startTime, endTime, profit) == 120
startTime = [1,2,3,4,6]
endTime = [3,5,10,6,9]
profit = [20,20,100,70,60]
assert s.jobScheduling(startTime, endTime, profit) == 150
startTime = [1,1,1]
endTime = [2,3,4]
profit = [5,6,4]
assert s.jobScheduling(startTime, endTime, profit) == 6